

产品概述

SS8812T 为打印机和其它电机一体化应用提供一种双通道集成电机驱动方案。SS8812T 有两路 H 桥驱动,每个 H 桥可提供最大输出电流 1.6A (在 24V 和 Ta = 25°C 适当散热条件下),可驱动两个刷式直流电机,或者一个双极步进电机,或者螺线管或者其它感性负载。双极步进电机可以以整步、2 细分、4 细分运行,或者用软件实现高细分。

SS8812T的每一个H桥的功率输出模块由N型功率MOSFET组成。每个H桥包含整流电路和限流电路。简单的并行数字控制接口,衰减模式可选择为快衰减,慢衰减和混合衰减。

SS8812T提供了一种低功耗睡眠模式来关断内部电路,以达到非常低的静态电流。这种睡眠模式通过设置 nSLEEP 引脚来实现。内部关断功能包含过流保护,短路保护,欠压锁定保护和过温保护,并提供一个故障输出管脚 nFAULT 引脚。

SS8812T 提供一种带有裸露焊盘的 ETSSOP28 封装,能有效改善散热性能,且是无铅产品,引脚框架采用 100%无锡电镀。

应用

- POS 打印机
- 安防相机
- 办公自动化设备
- 游戏机
- 机器人

特征

- 双通道 H 桥电流控制电机驱动器
 - -单个或两个有刷直流电机
 - -一个步进电机
- PWM 控制接口
- 固定频率下电流控制可选择
 - 2 bits 电流控制,提供 4 个电流台阶
- 低导通阻抗的金属氧化物半导体场效应晶体管 (MOSFET)
- 24V, Ta = 25°C 时可实现 1.6A 最大驱动 电流
- 24V,Ta= 25°C 时 R_{DS}(on)为 720mΩ(典型值 HS + LS)
- 8.2~36V 工作电压范围
- 睡眠模式低电流
- 内置 3.3V 基准电压
- 带散热片的表面贴装封装
- 保护特性
 - 过流保护 (OCP)
 - 热关断 (TSD)
 - 欠压闭锁 (UVLO)
 - 故障显示 Pin (nFAULT)

产品信息

产品型号	封装形式	备注
SS8812T-ET-TP	ETSSOP28	有短路保护自恢复功能

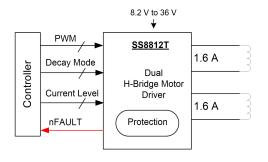
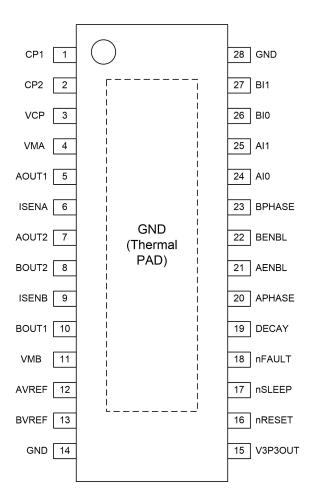



图 1. 典型应用原理图

引脚配置和功能

管脚列表

引脚名称	引脚序号	引脚描述	外部组件或连接说明	
电源和地				
GND	14,28	芯片地	(5. + OND	
PPAD	-	芯片地	所有 GND 管脚和芯片裸焊盘接到电源地。	
VMA	4	A 通道 H 桥电源	中和中海 CC+1/AL 控明重拉士 +1	
VMB	11	B 通道 H 桥电源	电机电源,所有 VMx 管脚需接在一起。	
V3P3OUT	15	3.3V 整流输出	外接 0.47uF 电容到地做滤波,可给参考电压 xVREF供电。	
CP1	1	电荷泵电容管脚 1	が接 0.04uE /50V 由家左 CR4 上 CR2 → 同	
CP2	2	电荷泵电容管脚 2	外接 0.01uF / 50V 电容在 CP1 与 CP2 之间	
VCP	3	高边栅极驱动	加 0.1uF 电容到 VM。	
控制				
AENBL	21	A 通道 H 桥使能输入	输入逻辑高电平, A 通道工作。	
APHASE	20	A 通道 H 桥方向控制输入	输入逻辑高电平,AOUT1输出H, AOUT2输出L。	
AI0	24	A 通道 H 桥电流设置输入 0 AI1,AI0=0,0→100%, AI1,AI0=0,1→71%,		
Al1	25	A 通道 H 桥电流设置输入 1	AI1,AI0=1,0→38%, AI1,AI0=1,1→0%	
BENBL	22	B 通道 H 桥使能输入	输入逻辑高电平, B 通道工作。	
BPHASE	23	B 通道 H 桥方向控制输入	输入逻辑高电平,BOUT1输出H, BOUT2输出L。	
BI0	26	B 通道 H 桥电流设置输入 0	BI1,BI0=0,0→100%, BI1,BI0=0,1→71%,	
BI1	27	B 通道 H 桥电流设置输入 1	BI1,BI0=1,0→38%, BI1,BI0=1,1→0%	
nSLEEP	17	休眠模式输入	为逻辑高电平时,芯片正常工作;为逻辑低电平,芯 片进入低功耗休眠模式	
DECAY	19	衰减模式选择输入	低电平=慢衰减;悬空=混合衰减;高电平=快衰减。	
nRESET	16	复位输入	高电平,芯片正常工作;低电平,芯片进入复位状态。	
AVREF	12	A 通道 H 桥参考电压输入	参考电压输入,来设定驱动电流。可外接可编程 DAC	
BVREF	13	B 通道 H 桥参考电压输入	来实现高细分,或者接到固定参考电压(如 V3P3OUT)。	
状态				
nFAULT	18	错误状态输出	Open drain 输出,若使用需外接一个上拉电阻。当出现过温或过流时,输出为低电平。	
输出				
ISENA	6	A 通道 H 桥 ground / Isense	A 通道 H 桥检测电流端,接检测电流电阻到地,若不需要限流,直接接地。	
ISENB	9	B 通道 H 桥 ground / Isense	B 通道 H 桥检测电流端,接检测电流电阻到地,若不需要限流,直接接地。	
AOUT1	5	A 通道 H 桥输出 1	A 通道 H 桥输出,定义正向电流为	
AOUT2	7	A 通道 H 桥输出 2	AOUT1 → AOUT2	
BOUT1	10	B通道 H 桥输出 1	B 通道 H 桥输出,定义正向电流为	
BOUT2	8	B 通道 H 桥输出 2	BOUT1 → BOUT2	

V1.0 3 2020